Design, Synthesis and Biological Evaluation of N,N-Substituted Amine Derivatives as Cholesteryl Ester Transfer Protein Inhibitors.

نویسندگان

  • Xinran Wang
  • Lijuan Hao
  • Xuanqi Xu
  • Wei Li
  • Chunchi Liu
  • Dongmei Zhao
  • Maosheng Cheng
چکیده

N,N-Substituted amine derivatives were designed by utilizing a bioisosterism strategy. Consequently, twenty-two compounds were synthesized and evaluated for their inhibitory activity against CETP. Structure-activity relationship (SAR) studies indicate that hydrophilic groups at the 2-position of the tetrazole and 3,5-bistrifluoromethyl groups on the benzene ring provide important contributions to the potency. Among these compounds, compound 17 exhibited excellent CETP inhibitory activity (IC50 = 0.38 ± 0.08 μM) in vitro. Furthermore, compound 17 was selected for an in vitro metabolic stability study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design, Synthesis, and Biological Evaluation of N,N-Disubstituted-4-Arylthiazole-2-Methylamine Derivatives as Cholesteryl Ester Transfer Inhibitors.

Cholesteryl ester transfer protein (CETP) has been identified as a potential target for cardiovascular disease (CVD) for its important role in the reverse cholesteryl transfer (RCT) process. In our previous work, compound 5 was discovered as a moderate CETP inhibitor. The replacement of the amide linker by heterocyclic aromatics and then a series of N,N-substituted-4-arylthiazole-2-methylamine ...

متن کامل

Design, Synthesis and Biological Evaluation of New Imidazo[2,1-b]Thiazole Derivatives as Selective COX-2 Inhibitors

A new series of imidazo[2,1-b]thiazole analogs containing a methyl sulfonyl COX-2 pharmacophore was synthesized and evaluated for their COX-2 inhibitory activity. According to in-vitro COX-1/COX-2 inhibition data, all compounds (6a-g) were selective inhibitors of COX-2 isoenzyme with IC50 values in the highly potent 0.08-0.16 mM range. These results indicated that both potency and selectivity o...

متن کامل

Design, Synthesis and Biological Evaluation of New Imidazo[2,1-b]Thiazole Derivatives as Selective COX-2 Inhibitors

A new series of imidazo[2,1-b]thiazole analogs containing a methyl sulfonyl COX-2 pharmacophore was synthesized and evaluated for their COX-2 inhibitory activity. According to in-vitro COX-1/COX-2 inhibition data, all compounds (6a-g) were selective inhibitors of COX-2 isoenzyme with IC50 values in the highly potent 0.08-0.16 mM range. These results indicated that both potency and selectivity o...

متن کامل

Design, Synthesis, Molecular Modeling Studies and Biological Evaluation of N'-Arylidene-6-(benzyloxy)-4-oxo-1,4-dihydroquinoline-3-carbohydrazide Derivatives as Novel Anti-HCV Agents

HCV-induced hepatitis is one of the most debilitating diseases. The limited number of anti-HCV drugs and drug-resistance necessitate developing of new scaffolds with different mode of actions. HCV non-structural protein 5B (NS5B) is an attractive target for development of novel inhibitors of HCV replication. In this paper, new N'-arylidene-6-(benzyloxy)-4-oxo-1,4-dihydroquinoline-3-carbohydrazi...

متن کامل

Design, Synthesis, Molecular Modeling Studies and Biological Evaluation of N'-Arylidene-6-(benzyloxy)-4-oxo-1,4-dihydroquinoline-3-carbohydrazide Derivatives as Novel Anti-HCV Agents

HCV-induced hepatitis is one of the most debilitating diseases. The limited number of anti-HCV drugs and drug-resistance necessitate developing of new scaffolds with different mode of actions. HCV non-structural protein 5B (NS5B) is an attractive target for development of novel inhibitors of HCV replication. In this paper, new N'-arylidene-6-(benzyloxy)-4-oxo-1,4-dihydroquinoline-3-carbohydrazi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 22 10  شماره 

صفحات  -

تاریخ انتشار 2017